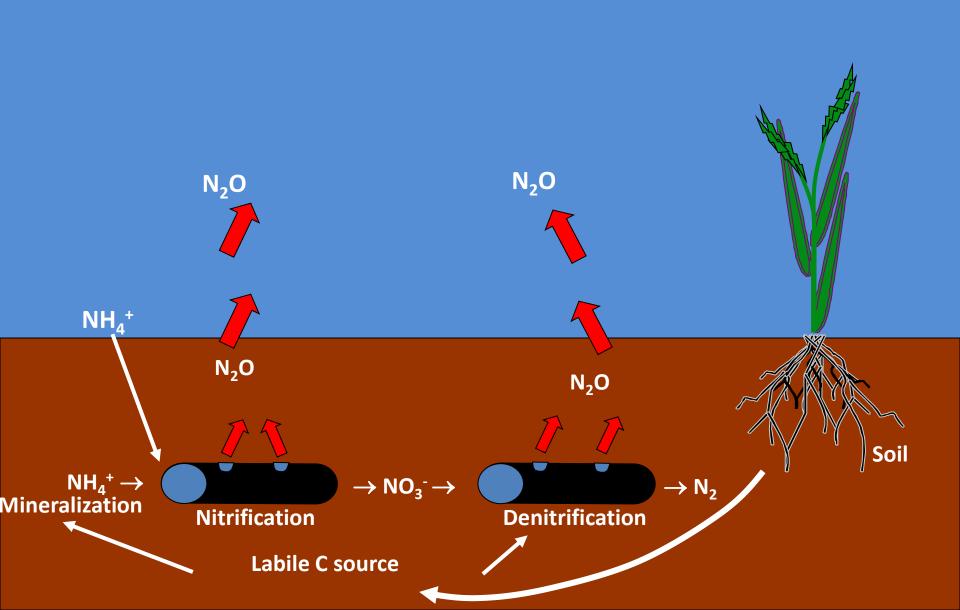
Evaluating Mitigation Options of Nitrous Oxide Emissions in California Cropping Systems

Martin Burger

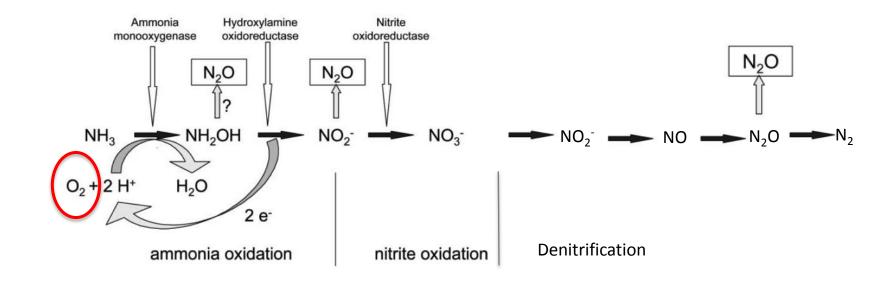
Dept. of Land, Air and Water Resources

University of California Davis

California Air Resources Board Research Seminar June 16, 2016


Today's Talk

- Background on sources and mechanisms of N₂O production from nitrogen fertilizer
- Results from field experiments testing N₂O mitigation practices in 7 cropping systems
- N₂O mitigation potential of management practices
- Conclusions
- Economics
- Resources for growers & consultants


Rationale for Research Approach

- Focus on management of nitrogen fertilizer and irrigation
- Strong correlation of N₂O emissions and fertilizer N rates
- Most N fertilizers are ammonia based and would therefore induce high rates of nitrification
- Short period (2-3 weeks) following N fertilizer applications often produces the majority of total seasonal N₂O emissions
- Need to understand mechanisms of N₂O production

Soil Factors affecting N₂O production and emission The "Leaky Pipe Theory"

N₂O production through ammonia oxidation and denitrification pathways

Controls on N₂O Production

Oxygen levels, regulated by moisture & carbon:

Low oxygen:

 Microbes produce N₂O during nitrification in addition to N₂O from denitrification.

Anaerobic conditions:

 Only denitrification, with N₂O production rates increasing by an order magnitude

Ammonia oxidation pathways and nitrifier denitrification are significant sources of N₂O and NO under low oxygen availability

Xia Zhu^{a,b,c,1}, Martin Burger^{b,1}, Timothy A. Doane^b, and William R. Horwath^{b,1}

^aCenter for Ecological Studies, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; ^bBiogeochemistry and Nutrient Cycling Laboratory, Department of Land, Air and Water Resources, University of California, Davis, CA 95616; and ^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

PNAS

N₂O Mitigation Potential / Hypotheses

Mitigation strategies with focus on managing NH₄ and O₂:

- 1. Controls on nitrification
 - Nitrification inhibitors slow down ammonia oxidation
 - Choice of fertilizer: Pure ammonia vs. mixtures
 - Concentration of N fertilizer in soil
 - Evidence from field experiments: Anhydrous ammonia causes higher N₂O emissions than other N fertilizers
 - Addition of NH₃ increases soil pH, nitrification rates, and the potential for nitrite accumulation
 - Ammonia oxidation consumes O₂

N₂O Mitigation Potential / Hypotheses

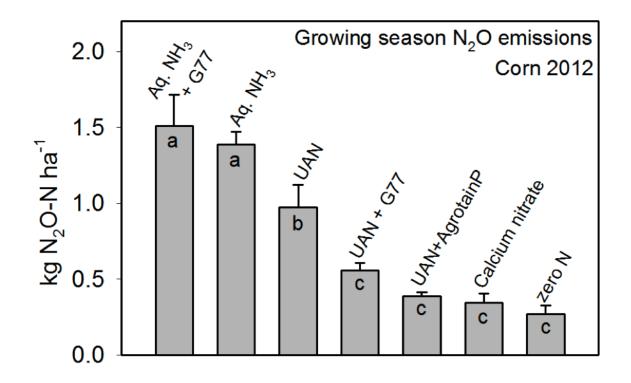
- 2. Keeping soils aerobic lowers N₂O production
 - Avoiding water logging
 - Drip irrigation
 - Maintaining soil porosity through organic matter additions

Field Experiments

- ☐ **N Fertilizer formulation**: Corn
- *Nitrification inhibitors*: Corn, SDI tomatoes, wheat , almonds
- ☐ Fertilizer placement: Corn
- ☐ *Drip irrigation*: Corn, alfalfa, lettuce
- ☐ *Organic management*: Tomato
- ☐ *Cover crops*: Grapevines

Corn: Fertilizer N Source and Nitrification Inhibitors

- ☐ 3 Fertilizers with varying ammonia:nitrate composition
- □ 2 Urease and nitrification inhibitors (AgrotainPlus[™])
- ☐ Soil type: Reiff loam



Gas flux measurements:

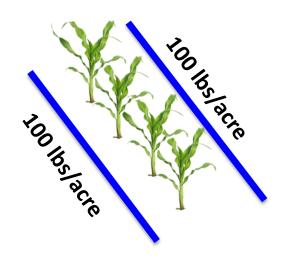
- ☐ Static chamber technique
- ☐ 3 different chamber locations within each replicate plot (n=3):
 - Furrow
 - Shoulder
 - Bed
- ☐ Gas chromatography for analysis of chamber air

Corn: Fertilizer N Source and Nitrification Inhibitors

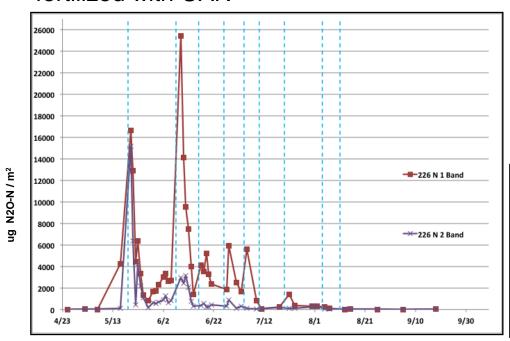
- ☐ Furrow irrigated corn, fertilized with 222 kg N ha⁻¹
- ☐ Nitrification inhibitor: Dicyandiamide (DCD)

Corn: Treatments

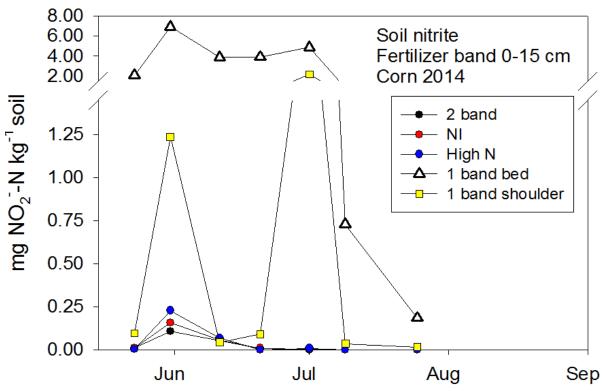
Urea ammonium nitrate (UAN) fertilizer application in Stockton clay soil


- ☐ Nitrification inhibitor
- ☐ N Fertilizer placement
- N rate trial
- ☐ Subsurface drip irrigation in adjacent field

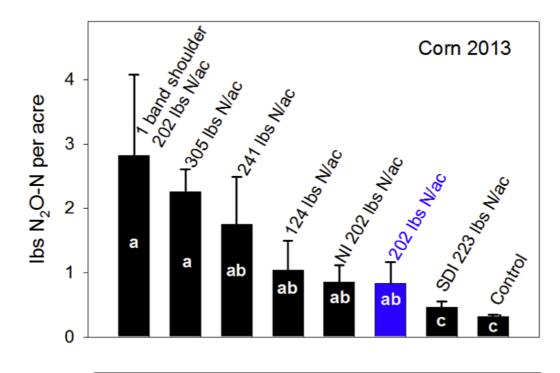
Corn: N Fertilizer Placement

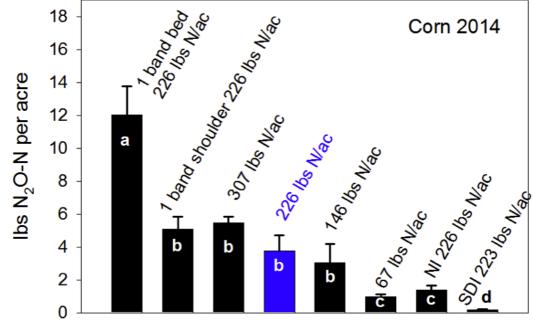

☐ One-band *vs.* two-band application of UAN fertilizer

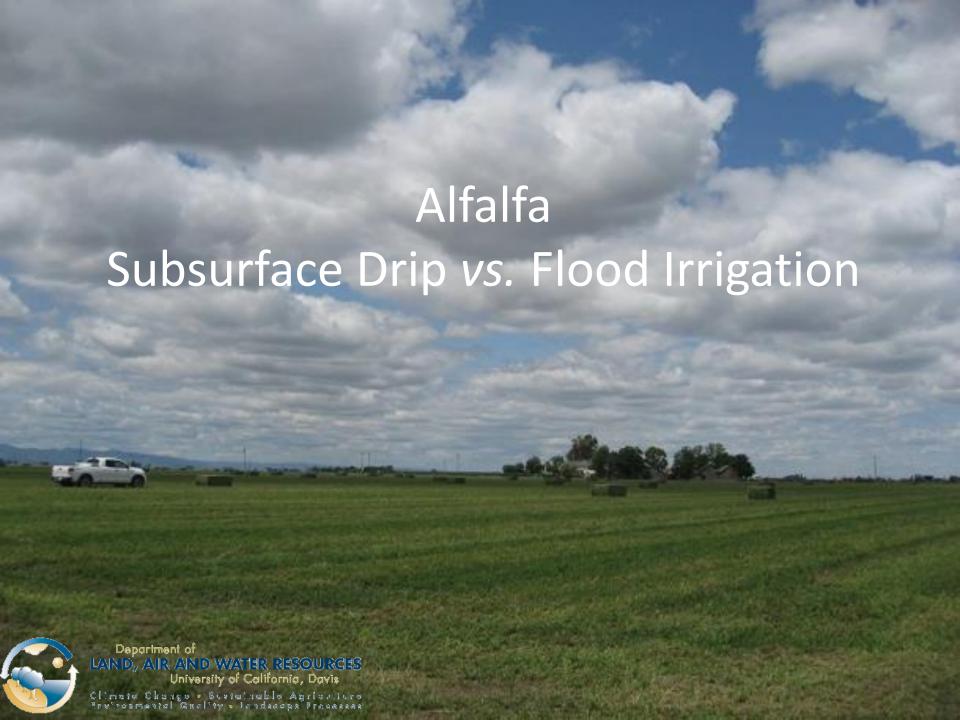
One-Band vs. Two-Band UAN Application in Corn


Daily N₂O flux in furrow-irrigated corn fertilized with UAN

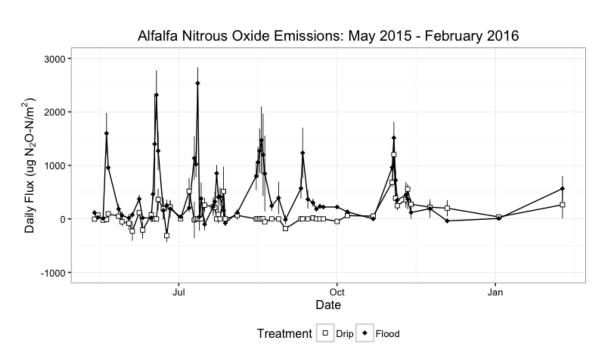
Daily N₂O fluxes were elevated for weeks when side-dress N was applied in one band (red symbols), rather than in two bands.

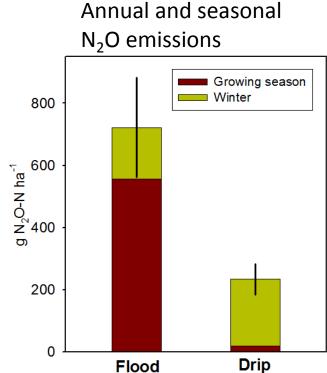

One-Band vs. Two-Band UAN Application in Corn


Soil nitrite concentrations


Corn: Results of Trials in Grower Fields

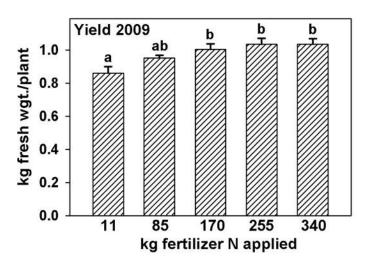
- ☐ Highest N₂O emissions in 1-band treatments
- Lowest N₂O fluxes in SDI
- ☐ Nitrification inhibitor effective in one of two years
- No effect of nitrification inhibitor on yields or plant N uptake





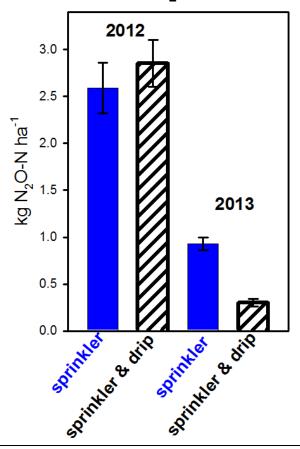
Alfalfa: Subsurface Drip *vs.* Flood Irrigation

Lettuce: Sprinklers and Surface Drip Irrigation



Surface drip irrigation after thinning

Lettuce


Lettuce Yields & Crop N Removal

Crop N off-take:

kgN/ha		
11	98.5	
85	114.8	
170	136.2	
255	148.8	
340	159.1	

Seasonal N₂O emissions

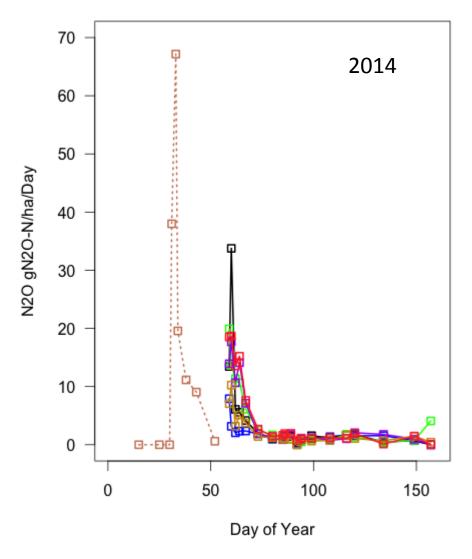
2012: N fertilizer application 336 kg N/ha

2013: N fertilizer application 234 kg N/ha

Testing Nitrification Inhibitors in Tomato, Wheat, and Almonds

Microsprinklers

Wheat


January 2014

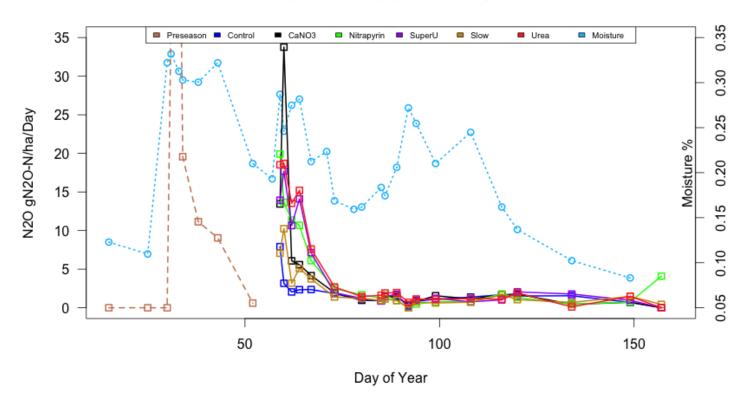
February/March 2014

Wheat

Soil Nitrous Oxide Fluxes

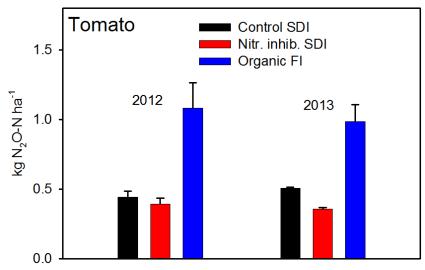
g N₂O-N ha⁻ 1

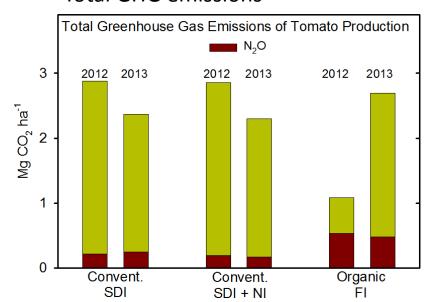
January irrigation: 576


Feb/March rainfall:

Control	135
SuperU	140
CaNO ₃	196
Nitrapyrin	212
Slow release	233
Urea	445

Wheat


Soil Nitrous Oxide Fluxes


- \Box High yields (4.3 4.7 U.S. tons/acre)
- ☐ 75% top dress N fertilizer recovery in plants

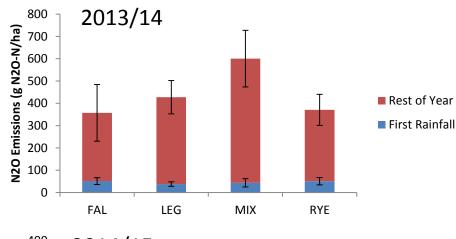
Tomato: Conventional & Organic Management

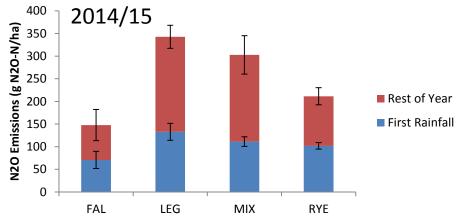
Seasonal N₂O emissions

Total GHG emissions

Treatments:

- 1. Conventional SDI control
- Conventional SDI nitrification inhibitor
- 3. Organic, furrow irrigated Brentwood silty clay soil





Vineyard

☐ Effect of winter cover crops on N₂O emissions triggered by first rainfall

Summary

Reduction in N₂O Emissions with Mitigation Practice

	kg CO ₂ eq. ha ⁻¹ reduction
Nitrification inhibitors	-
Corn	280 - 1245
Tomato	30 - 72
Wheat	79 - 141
Almond	0
Subsurface drip vs. furrow- or flood irrigation	
Corn	265 - 1300
Tomato	492 - 670
Alfalfa	228
Lettuce (sprinkler/drip vs. sprinkler)	295
Fertilizer formulation	
Anhydrous ammonia vs. ammonium sulfate	300
Aqua ammonia vs. UAN	197
Discoment	

Placement

Two-band vs. one band bed UAN application 4500

Department of

LAND, AIR AND WATER RESOURCES

University of California, Davis

Climate Change • Sustainable Agriculture Environmental Quality • Landscape Processes

Summary

kg CO₂ eq. ha⁻¹ reduction

N use efficiency

Recommended vs. excessive N rate

Corn 566 – 1574

Lettuce 136 – 384

Tomato, furrow-irrigated 1063 – 1307

Conclusions

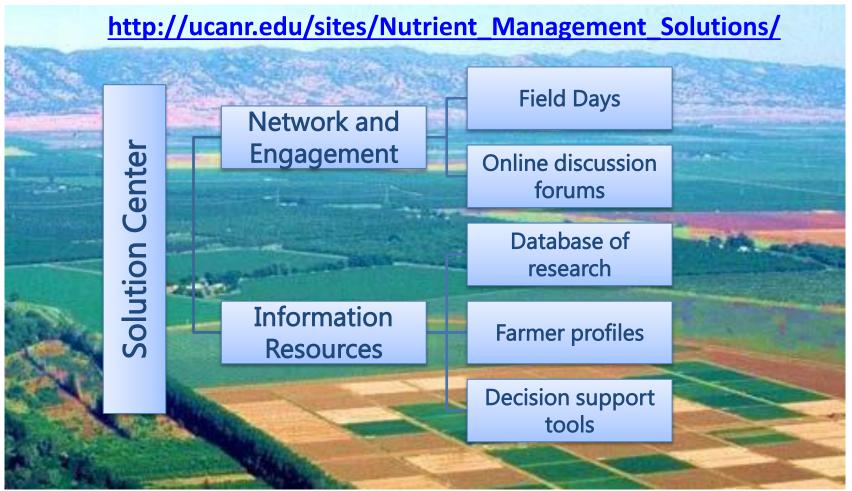
- \square Subsurface drip irrigation reliably reduces N₂O emissions.
 - Adoption is driven by economics, preferred for high-value crops
 - Subsurface drip may not be optimal for every cropping system
- \square Nitrification and urease inhibitors show promise for reducing N_2O
 - Know-how needed to use optimally
 - We did not see any differences in N use efficiencies or yields
- Spatially concentrating N fertilizer is not recommended
- ☐ Concentrated ammonia fertilizers (anhydrous, aqua) likely produce higher emissions than other formulations
- ☐ To improve N use efficiency and encourage correct N fertilizer additions, regular pre-plant soil sampling is recommended

Economic Considerations

 Large installation costs for subsurface drip irrigation and increasing maintenance costs over time. Investment will be made if high-value crops in the rotation, e.g. processing tomatoes:

Operating cost \$2700 per acre

Cost of production \$62 per ton tomatoes


Revenue (2014) \$83 per ton tomatoes

- Typical urease and nitrification inhibitor application \$50/ ha
- \$ 12.69 per Mg CO₂eq. (June 9, 2016) in California
- Soil sampling: Several hundred \$ per field (about \$10 per acre), but savings in fertilizer costs can outweigh this expense
 - Typical Fertilizer costs (SDI tomatoes) \$195 per acre

Solution Center for Nutrient Management

University of **California**Agriculture and Natural Resources

https://apps1.cdfa.ca.gov/FertilizerResearch/docs/Guidelines.html

A collaboration between

Additional Information

Soil and Plant Tissue Sampling

Soil Test Sampling Instructions

Sampling for Soil Nitrate Determination

Soil Sampling in Orchards

Plant Tissue Sampling

Resources, Links

Organized by Topic

Organized by Source

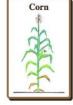
Seasonal Uptake Curves

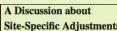
Site-Specific Adjustments

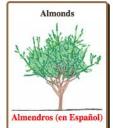
California Fertilization Guidelines

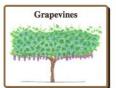
These guidelines are based on research results from studies carried out in California and elsewhere. For an optimal fertilization program, site-specific information needs to be take in into account. A discussion about site-specific adjustments can be found here.

Field crops and vegetables









Tree crops

Acknowledgements

- W.R. Horwath
- Johan Six
- Dan Putnam
- Marc Los Huertos
- 6 growers & staff
- Hannah Waterhouse
- Ryan Byrnes
- Yonathan Cooperman
- Toby Maxwell
- Taryn Kennedy
- Xia Zhu-Barker

Emily Hodson

Alia Tsang

Julian Herzsage

Timothy Doane

Jordon Wade

Bibiana Molinos

Brian De la Cruz

Israel Herrera

Jim Jackson

Franz Niederholzer

Pam Krone-Davis

Mirna Albarran-Jack

Garret Heinz

Stefanie Kortman

